64 research outputs found

    An Exploration of Bacterial Microbiome in E. TN Ambulances

    No full text
    When patients develop new-onset infections after hospital admission, the origin of the infection is typically assumed to be nosocomial; however, ambulances are potentially unexplored reservoirs for emerging pathogens. This study seeks to identify the scope of bacterial contamination in rural East Tennessee ambulances. Though universal precautions and cleaning procedures aim to reduce the spread of infectious diseases to provider and patient, little is known about the bacterial microbiome of ambulances. To the best of our knowledge, this is the first study of its kind to be performed in the state of Tennessee and the first since the introduction of UVGI units as an ambulance-based COVID-19 infection control measure. Our dissemination of post-pandemic findings may impact ambulance sanitation measures and will add to the national and global knowledge pertaining to the microbiome of emergency medical patient transport systems. Ambulances in East Tennessee were sampled using environmental sampling contact plates. At least one active ambulance unit for each EMS service underwent sampling. Three samples were obtained from each of three areas: the floor of the ambulance transport area, the rear door panel inside the transport area and stretcher. The plates were then incubated at 30-35C for 48 hours. Colony counts were manually performed before the plates were shipped for species identification via MALDI-TOF DNA analysis by MIDI laboratories (Newark, DE). One plate from each ambulance door and stretcher was sent for bacterial identification. Only one sample returned free of growth. All floor samples, several stretcher samples, and three door samples presented vast growth with colonies too numerous to count. The results from bacterial identification showed all flora were human commensal flora or environmental flora. The flora found on ambulance doors with opportunistic capabilities are as follows: Staphylococcus hominis, Staphylococcus epidermidis, Enterobacter cloacae, Enterobacter xinagfangensis, Bacillus cereus, Klebsiella oxytoca, and Bacillus subtilis; and the flora found on the stretchers with opportunistic capabilities are as follows: Staphylococcus haemolyticus, Staphylococcus epidermidis, Staphylococcus cohnii ssp urealyticus, Bacillus cereus, Corynebaccterium mucifaciens, Staphylococcus pettenkoferi, Klebsiella oxytoca, Staphylococcus capitis, Bacillus subtillis, and Staphylococcus caprae. In this era of increasing antibiotic resistance, it is concerning that several microbes with pathogenicity were found, including species that often confer the spread of resistance such as Klebsiella oxytoca and Enterobacter cloacae. Overall, the finding of numerous diverse colonies does not support adequate sanitation of the ambulances. Further study is required to identify the most effective sanitation methods, and further metagenomic study is needed to explore the presence of genes that facilitate the spread of microbial resistance

    Manifestações otológicas em criança com síndrome da imunodeficiência adquirida Otologic manifestations in child with acquired immunodeficiency syndrome

    No full text
    As manifestações otológicas são particularmente comuns em crianças portadoras do Vírus da Imunodeficiência Humana (HIV). A disacusia nestes pacientes pode ser condutiva, principalmente decorrente de otite média ou sensorioneural, pela ação direta do vírus ou pela ação de drogas anti-retrovirais. Neste trabalho, relatamos o caso de uma criança de 10 anos de idade, portadora de HIV, com disacusia e revisamos a literatura.<br>Patients infected with Human immunodeficiency virus (HIV) often present with otologic manifestations. The hearing loss may be condutive type, resulting from middle ear disease or sensorineural type due virus action or drug therapy. In this paper we describe and discuss a case of a ten years old child with HIV and otologic manifestations including hearing loss
    corecore